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We consider the Laplacian coflow of a G2-structure on warped products of the form 
M7 = M6 ×f S1 with M6 a compact 6-manifold endowed with an SU(3)-structure. 
We give an explicit reinterpretation of this flow as a set of evolution equations of 
the differential forms defining the SU(3)-structure on M6 and the warping function 
f . Necessary and sufficient conditions for the existence of solution for this flow are 
given. Finally we describe new solutions for this flow where the SU(3)-structure on 
M6 is nearly Kähler, symplectic half-flat or balanced.
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0. Introduction

The first author to consider flows of G2-structures was Bryant in 2006, [3]. Concretely he considered the 
Laplacian flow of a G2-structure:

∂

∂t
ϕ(t) = Δ7ϕ(t),

starting from a closed 3-form ϕ0 defining the G2-structure. Δ7 is the corresponding Hodge Laplacian, given 
by the formula Δ7 = ∗7 d7 ∗7 d7 − d7 ∗7 d7 ∗7.

In the last years there has been a lot of fundamental works on this issue. In [5] it was proved the short 
time existence and uniqueness of solution on compact manifolds. The first examples of long time solutions 
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to this flow were described in [8]. These examples consist on non compact nilpotent Lie groups endowed 
with a one-parameter family of closed G2-structures such that satisfies the Laplacian flow equation for all 
t ∈ (a, +∞) with a < 0.

Recent papers by Lotay and Wei [17–19] derived important properties of the Laplacian flow as long time 
existence or convergence results. Even more recently Fino and Raffero on [11] obtained sufficient conditions 
for the existence of solution of this flow on warped products of the form M6×f S

1 with M6 a 6-dimensional 
manifold endowed with an SU(3)-structure. Recall that, if (B, gB) and (F, gF ) are Riemannian manifolds 
and f is a non-vanishing differentiable function on B, then the warped product W = B ×f F consists on 
the product manifold B × F endowed with the metric g = π∗

1(gB) + f2π∗
2(gF ) where π1 and π2 are the 

projections of W onto B and F respectively. They also reinterpret the flow as a set of evolution equations on 
M6 involving the differential forms defining the SU(3)-structure and the warping function f . More details 
about the Laplacian flow of a closed G2-structure can be found in the reviews [9,16] and the references 
therein. Another interesting result concerning this flow was due to Xu and Ye in [23], where they proved 
long time existence and uniqueness of solution for this flow starting near a torsion free G2-structure.

In this work we consider the so-called Laplacian “coflow” of G2-structures. This coflow was introduced 
by Karigiannis, McKay and Tsui in [15] and can be considered as the analogous of the Laplacian flow of a 
closed G2-structure where the 3-form ϕ0 is now considered to be coclosed instead of closed. Equivalently 
this flow can be stated as:

∂

∂t
∗7 ϕ(t) = −Δ7 ∗7 ϕ(t),

where the 4-form ∗7ϕ0 is closed and ∗7 denotes the Hodge star operator. These authors considered more 
natural to define this flow with a minus sign in order to make it more likely to the heat equation. In order to 
obtain solutions they consider 7-dimensional manifolds M6 × L1 with L1 = R or S1 where M6 is endowed 
with a Calabi-Yau or a nearly Kähler structure. Grigorian in [13] introduced the modified Laplacian coflow, 
which consists on a modified version of the Laplacian coflow, proving short time existence and uniqueness 
of solution for this modified flow. He also derives the modified Laplacian coflow for warped G2-structures 
of the form M6 ×f L1 obtaining solution for M6 being Calabi-Yau or nearly Kähler. Long time solutions 
for the Laplacian coflow on non compact nilpotent Lie groups were described in [1]. In this work we present 
solutions for the coflow on warped products where the base manifolds are Lie groups endowed with metrics 
belonging to the Gray-Hervella classes W1 ⊕W2 ⊕W3.

The paper is structured as follows. In Section 1 we give an introduction to SU(3) and G2-structures. 
Section 2 is devoted to G2-structures of the form M6 ×f S1 (M6 being compact and endowed with an 
SU(3)-structure) whose induced metric describes a warped product. In particular in Theorem 2.4 we give 
an explicit description of the torsion forms of such a G2-structure in terms of the torsion forms of the 
SU(3)-structure on the base manifold and the warping function. In Section 3 we reinterpret the Laplacian 
flow and coflow of a G2-structure as a set of evolution equations of the SU(3)-structure and we describe the 
Laplacian coflow operator of the warped G2-structure by means of the torsion forms of the SU(3)-structure 
and the warping function. In particular for the Laplacian flow we reobtain the equations due to Fino and 
Raffero in [11]. Finally the goal of Section 4 is to obtain new examples of solutions of the Laplacian coflow 
constructed as warped products where the base manifolds are 6-dimensional and they are endowed with 
nearly Kähler, symplectic half-flat or balanced SU(3)-structures.
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1. SU(3) and G2-structures

In this section we review some preliminaries concerning SU(3) and G2-structures. More concretely we 
present these structures, their corresponding SU(3) and G2 type decomposition of the spaces of differential 
forms and finally their torsion forms.

1.1. SU(3)-structures

An SU(n)-structure on a differentiable manifold M2n consists on a triple (g, J, Ψ) where (g, J) is an 
almost Hermitian structure on M2n and Ψ is a complex (n, 0) form, satisfying

(−1)n(n−1)/2
( ı

2

)n

Ψ ∧ Ψ = 1
n! ω

n,

with Ψ the conjugated form of Ψ and ω the Kähler form of the almost Hermitian structure. An 
SU(n)-structure can equivalently be described by the triple (ω, ψ+, ψ−) where ψ+ and ψ− are, respectively 
the real and the imaginary part of the complex form Ψ. In what follows we will focus on SU(3)-structures 
on 6-dimensional manifolds. Note that in this case, the metric gω,ψ± can be recovered from (ω, ψ+, ψ−) as

gω,ψ±(X,Y )vol6 = −3 (ιX)ω ∧ (ιY ψ+) ∧ ψ+,

where ι denotes the contraction operator, vol6 = 1
3!ω

3 and X, Y ∈ X(M6).
The presence of such structure on a manifold M6 can also be characterized by the existence of a local 

basis of 1-forms {e1, . . . , e6} such that (ω, ψ+, ψ−) can be described as:

ω = e12 + e34 + e56,

ψ+ = e135 − e146 − e236 − e245, ψ− = −e246 + e235 + e145 + e136,
(1)

where we denote, as usual in the related literature, eij the wedge product ei∧ej and eijk the wedge product 
ei ∧ ej ∧ ek. In the following, a basis in which the SU(3)-structure has the expression (1) will be called an 
adapted basis.

In [6] it is described how the intrinsic torsion of an SU(3)-structure, namely τ , lies in a space of the form

τ ∈ W±
1 ⊕W±

2 ⊕W3 ⊕W4 ⊕W5,

where Wi denote the irreducible components under the action of the group SU(3). This torsion can be 
described by the exterior derivatives of ω, ψ+ and ψ− and also in terms of the so called torsion forms. 
This latter description is given in [4] where the authors consider the natural action of the group SU(3) on 
Ωk(M6), the space of k-forms on M6. Thus, the different spaces of forms Ωk(M6) can be splitted into SU(3)
irreducible subspaces as follows:

Ω1(M6) is irreducible,
Ω2(M6) = Ω2

1(M6) ⊕ Ω2
6(M6) ⊕ Ω2

8(M6),
with
Ω2

1(M6) = {fω|f ∈ C∞(M6)},
Ω2

6(M6) = {∗6J(η ∧ ψ+)|η ∈ Ω1(M6)} = {σ ∈ Ω2(M6)|Jσ = σ},
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Ω2
8(M6) = {σ ∈ Ω2(M6)|σ ∧ ψ+ = 0, ∗6Jσ = −σ ∧ ω} = {σ ∈ Ω2(M6)|Jσ = −σ, σ ∧ ω2 = 0};

and
Ω3(M6) = Ω3

+(M6) ⊕ Ω3
−(M6) ⊕ Ω3

6(M6) ⊕ Ω3
12(M6),

with

Ω3
+(M6) = {fψ+| f ∈ C∞(M6)}, Ω3

6(M6) = {η ∧ ω| η ∈ Ω1(M6)} = {γ ∈ Ω3(M6)| ∗6 Jγ = γ},

Ω3
−(M6) = {fψ−| f ∈ C∞(M6)}, Ω3

12(M6) = {γ ∈ Ω3(M6)| γ ∧ ω = 0, γ ∧ ψ± = 0},

where ∗6 denotes the Hodge star operator associated to the induced metric gω,ψ± and the volume form vol6. 
Notice that Ωk

d(M6) denotes the SU(3)-irreducible space of k-forms having dimension d. Decompositions of 
the spaces of k-forms for k = 4, 5 and 6 need not to be detailed since they can be achieved via the Hodge 
star operator, ∗6Ωk

d(M6) = Ω6−k
d (M6).

With all these previous descriptions the derivatives of ω, ψ+ and ψ− can be decomposed into summands 
belonging to the SU(3)-invariant spaces as follows (see [4] for details):

dω = −3
2 σ0ψ+ + 3

2π0ψ− + ν1 ∧ ω + ν3,

dψ+ = π0 ω
2 + π1 ∧ ψ+ − π2 ∧ ω,

dψ− = σ0 ω
2 + π1 ∧ ψ− − σ2 ∧ ω,

(2)

where σ0, π0 ∈ C∞(M6), π1, ν1 ∈ Ω1(M6), π2, σ2 ∈ Ω2
8(M6) and ν3 ∈ Ω3

12(M6) are the torsion forms of the 
SU(3)-structure.

Some classes of SU(3)-structures that are useful for our purposes are given in Table 1.

Table 1
Some classes of SU(3)-structures.

Class Non-vanishing torsion forms Structure
{0} – Calabi-Yau
W−

1 σ0 Nearly Kähler
W−

2 σ2 Symplectic half-flat
W3 ν3 Balanced

1.2. G2-structures

A G2-structure on a 7-dimensional differentiable manifold consists on a three form ϕ defining a metric, 
namely gϕ, a volume form vol7 and a 2-fold vector cross product, see [7,14]. The metric gϕ can be recovered 
from ϕ as

gϕ(X,Y )vol7 = 1
6 (ιXϕ) ∧ (ιY ϕ) ∧ ϕ,

with X, Y ∈ X(M7). The presence of such structure on a manifold M7 can be characterized by the existence 
of an adapted basis, i.e. a local basis of 1-forms {e1, . . . , e7} such that ϕ can be described as:

ϕ = e127 + e347 + e567 + e135 − e146 − e236 − e245.

Concerning the intrinsic torsion of a G2-structure, namely T , in [7] it is described how this torsion lies 
in a space of the form

T ∈ X1 ⊕X2 ⊕X3 ⊕X4,
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where Xi denotes the irreducible components under the action of the group G2. Thus, we can distinguish 
between 16 different classes of G2-structures, the so-called Fernández-Gray classes, which can be character-
ized by the behavior of the exterior derivative of ϕ and ∗7ϕ where ∗7 is the Hodge star operator induced 
by the G2-structure. In [3] it is given a description of the derivatives of ϕ and ∗7ϕ as summands belonging 
to the different G2-invariant spaces Xi.

In order to obtain this description it is considered the natural action of the group G2 on Ωk(M7). Thus, 
the different spaces of forms Ωk(M7) can be splitted into G2-irreducible subspaces as follows:

Ω1(M7) is irreducible,
Ω2(M7) = Ω2

7(M7) ⊕ Ω2
14(M7),

with
Ω2

7(M7) = {∗7(η ∧ ∗7ϕ)| η ∈ Ω1(M7)} = {σ ∈ Ω2(M7)|σ ∧ ϕ = 2 ∗7 σ},
Ω2

14(M7) = {σ ∈ Ω2(M7)| σ ∧ ϕ = − ∗7 σ};
and

Ω3(M7) = Ω3
1(M7) ⊕ Ω3

7(M7) ⊕ Ω3
27(M7),

with

Ω3
1(M7) = {fϕ| f ∈ C∞(M7)}, Ω3

27(M7) = {γ ∈ Ω3(M7)| γ ∧ ϕ = γ ∧ ∗7ϕ = 0}.

Ω3
7(M7) = {∗7(η ∧ ϕ)| η ∈ Ω1(M7)},

Similarly to the previous case, Ωk
d(M7) denotes the G2-irreducible space of k-forms which has dimension d. 

For the rest of dimensions (k = 4, 5, 6 and 7) use the relation: ∗7Ωk
d(M7) = Ω7−k

d (M7).
Thus, the derivatives of ϕ and ∗7ϕ can be decomposed into summands belonging to the G2-invariant 

spaces as follows (see [3]):

dϕ = τ0 ∗7 ϕ + 3τ1 ∧ ϕ + ∗7τ3, d(∗7ϕ) = 4τ1 ∗7 ϕ + τ2 ∧ ϕ, (3)

where τ0 ∈ C∞(M7), τ1 ∈ Ω1(M7), τ2 ∈ Ω2
14(M7) and τ3 ∈ Ω3

27(M7) are the torsion forms.
In particular:

τ0 = 1
7 ∗7 (dϕ ∧ ϕ), τ2 = − ∗7 d ∗7 ϕ + 4 ∗7 (τ1 ∧ ∗7ϕ),

τ1 = −1
12 ∗7 (∗7dϕ ∧ ϕ), τ3 = ∗7dϕ− τ0ϕ− 3 ∗7 (τ1 ∧ ϕ).

(4)

The principal Fernández-Gray classes are given in Table 2.

Table 2
Some classes of G2-structures.

Class Non-vanishing torsion forms Structure
P − Parallel
X1 τ0 Nearly Parallel
X2 τ2 Closed
X3 τ3 Coclosed of pure type
X4 τ1 Locally conformal parallel
X1 ⊕ X3 τ0, τ3 Coclosed

2. Warped G2-structures

Consider two Riemannian manifolds, namely (F, gF ) and (B, gB), and f a non-vanishing real differentiable 
function on B. The warped product, denoted as B ×f F , consists on the product manifold
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W = B × F

endowed with the metric gf = π∗
1(gB) + f2π∗

2(gF ) with π1 and π2 being the projections of W onto B and 
F respectively.

Starting from an SU(3)-structure (ω, ψ±) over M6, and considering a function f ∈ C∞(M6) it is possible 
to construct a G2-structure ϕ over M7 = M6 × S1 such that:

ϕ = f ω ∧ ds + (αψ+ − β ψ−), (5)

with s the coordinate on S1 and α, β ∈ R satisfying α2 + β2 = 1. Thus, the metric and the volume form of 
this G2-structure are given in terms of the SU(3)-structure by:

gϕ = gω,ψ± + f2ds2, vol7 = fvol6 ∧ ds.

Observe that gϕ = gf , so M7 is in fact a warped product. In what follows we will call warped G2-structure
to this G2-structure (5).

Remark 2.1. If we consider the pair (α, β) = (1, 0), this definition of warped G2-structure is exactly the one 
already given in [11].

The metrics gω,ψ± and gϕ on the base manifold M6 and the warped product M6×f S
1 respectively define 

two star operators ∗6 and ∗7 related by the following:

Lemma 2.2 (Lemma 3.2, [11]). Let η ∈ Ωk(M6) be a differential k-form on M6, and let ∗6 and ∗7 be the 
Hodge star operator determined by the SU(3)-structure and the warped G2-structure, respectively. Then

∗7η = f ∗6 η ∧ ds,

∗7(η ∧ ds) = (−1)kf−1 ∗6 η.

Hence from (5) and the previous lemma it can be checked that

∗7ϕ = 1
2ω

2 + f (αψ− + β ψ+) ∧ ds. (6)

Remark 2.3. The key idea of this section is to study how the G2-geometry of the warped product M6 ×f S
1

forces conditions on the SU(3)-geometry of the base M6. Having this idea in mind, we are going to describe 
the torsion forms (4) of the warped G2-structure in terms of the torsion forms of the SU(3)-structure and 
the warping function.

In the spirit of [20, Theorem 3.4] we can prove:

Theorem 2.4. Let (M6, ω, ψ±) be an SU(3)-manifold with torsion forms π0, σ0, π1, ν1, π2, σ2 and ν3. Then, 
the torsion forms (4) of a warped G2-manifold (M7 = M6 ×f S1, ϕ) are given by
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τ0 = 12
7 (απ0 − βσ0),

τ1 = 1
2 (ασ0 + βπ0)fds + 1

6η1,

τ2 = −ασ2 − βπ2 + f
3 ∗6

(
η2 ∧ ω2) ∧ ds− 1

3 ∗6 (η2 ∧ (αψ− + βψ+)) ,

τ3 =
[

2
7(απ0 − βσ0)fω − f

2 ∗6 (η3 ∧ (αψ+ − βψ−)) + f(απ2 − βσ2)
]
∧ ds− 1

2 ∗6 (η3 ∧ ω)−

3
14 (απ0 − βσ0)(αψ+ − βψ−) − ∗6ν3,

(7)

where ηi are the following 1-forms:

η1 = 1
f
d6f + π1 + ν1, η2 = 1

f
d6f + π1 − 2ν1, η3 = 1

f
d6f − π1 + ν1.

Proof. The result holds after long computations where the definition of the spaces Ωk
d(M6) are used. As 

hint, let us write down the expressions for dϕ, ∗7(dϕ) and d(∗7ϕ). From (5) and (6) one gets:

dϕ =
(
df ∧ ω − 3

2fσ0ψ+ + 3
2fπ0ψ− + f ν1 ∧ ω + f ν3

)
∧ ds

+(απ0 − β σ0)ω2 + π1 ∧ (αψ+ − βψ−) − (απ2 − β σ2) ∧ ω,

∗7(dϕ) = −f−1 ∗6 (df ∧ ω) + 3
2σ0ψ− + 3

2π0ψ+ − ∗6(ν1 ∧ ω) − ∗6 ν3

+ [2f(απ0 − β σ0)ω + f ∗6 (π1 ∧ (αψ+ − βψ−)) + α f π2 − β f σ2] ∧ ds,

d(∗7ϕ) = ν1 ∧ ω2 +
[
−f(ασ2 + βπ2) ∧ ω + f(ασ0 + βπ0)ω2 + (df + fπ1) ∧ (αψ− + βψ+)

]
∧ ds.

Finally, from (4) and using Lemma 2.2 the result is achieved after long and standard computations. �
Most of the Fernández-Gray classes of G2-structures are characterized in terms of the cancellation of 

some of their torsion forms (see Table 2). Using expressions (7), the cancellations of τ0, τ1, τ2 and τ3 are 
expressed by using the SU(3)-torsion forms of the base M6 and the warping function f .

Corollary 2.5. Let (M6, ω, ψ±) be an SU(3)-manifold. Thus, the torsion forms of the warped G2-structure 
satisfy:

τ0 = 0 ⇐⇒
{
i) απ0 − βσ0 = 0.

τ1 = 0 ⇐⇒
{

ii) ασ0 + βπ0 = 0,
iii) η1 = 0.

τ2 = 0 ⇐⇒
{

iv) η2 = 0,
v) ασ2 + βπ2 = 0.

τ3 = 0 ⇐⇒

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

vi) απ0 − βσ0 = 0,
vii) η3 = 0,
viii) απ2 − βσ2 = 0,
ix) ν3 = 0.

In Table 3 we show how the G2-geometry of the warped product M6 ×f S1 forces conditions on the 
SU(3)-geometry of the base M6.
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Table 3
Relation between torsion forms of the warped G2-structure and the SU(3)-structure.

Class G2-torsion forms SU(3)-torsion forms Class

P τ0 = τ1 = τ2 = τ3 = 0 σi = πi = νi = 0 0
d6f = 0

X2 τ0 = τ1 = τ3 = 0
π0 = σ0 = π1 = ν3 = 0

W±
2 ⊕ W4απ2 − βσ2 = 0

1
f d6f = −ν1

X3 τ0 = τ1 = τ2 = 0
π0 = σ0 = ν1 = 0

W±
2 ⊕ W3 ⊕ W5ασ2 + βπ2 = 0

1
f d6f = −π1

X4 τ0 = τ2 = τ3 = 0 σ2 = π2 = ν3 = 0 W±
1 ⊕ W4 ⊕ W51

f d6f = 1
2ν1 = 1

3π1

X1 ⊕ X3 τ1 = τ2 = 0
ασ0 + βπ0 = 0

W±
1 ⊕ W±

2 ⊕ W3 ⊕ W5ασ2 + βπ2 = 0
ν1 = 0, 1

f d6f = −π1

Remark 2.6. From Corollary 2.5, τ3 = 0 implies τ0 = 0, therefore nearly Parallel structures can not be 
achieved as warped G2-structures of the form (5).

3. The Laplacian flow and coflow of warped G2-structure of the form M6 ×f S1

Recall the definitions of the Laplacian flow and coflow, that are respectively:

(LF )

⎧⎨
⎩

∂

∂t
ϕ(t) = Δtϕ(t),

d7 ϕ(t) = 0,
(LcF )

⎧⎨
⎩

∂

∂t
(∗tϕ(t)) = −Δt(∗tϕ(t)),

d7 (∗tϕ(t)) = 0,

where ϕ(t) is a one-parameter family of G2-structures and Δt, ∗t denote the Laplacian and the Hodge star 
operator induced by ϕ(t) for every t.

Our objective in this section is to particularize the Laplacian flow and coflow considering one-parameter 
families of G2-structures obtained as warped products, i.e.

ϕ(t) = f(t)ω(t) ∧ ds + (αψ+(t) − βψ−(t)). (8)

From the previous expression, we derive the following:

∂

∂t
ϕ(t) =

(
∂

∂t
f(t)ω(t) + f(t) ∂

∂t
ω(t)

)
∧ ds + α

∂

∂t
ψ+(t) − β

∂

∂t
ψ−(t),

∂

∂t
(∗7ϕ(t)) =

[
∂

∂t
f(t) (βψ+(t) + αψ−(t)) + f(t)

(
β
∂

∂t
ψ+(t) + α

∂

∂t
ψ−(t)

)]
∧ ds + 1

2
∂

∂t
ω2(t).

(9)

Now we focus on the 3-form Δ7ϕ, resp. the 4-form Δ7 ∗7 ϕ. For a generic G2-structure, considering the 
formulas given in (3) of the exterior derivatives of ϕ and ∗7ϕ, a description of the Laplacian in terms of the 
torsion forms can be given as

Δ7ϕ = d7(τ2 − 4 ∗7 (τ1 ∧ ∗7ϕ)) + ∗7d7(τ0ϕ + 3 ∗7 (τ1 ∧ ϕ) + τ3). (10)

Since the Laplacian commutes with the Hodge star operator, Δ7∗7 = ∗7Δ7, combining (7) and (10) it is also 
possible to describe Δ7 ∗7 ϕ of a warped G2-structure in terms of the torsion forms of the SU(3)-structure 
and the warping function f for particular classes of G2-structures.

Provided that we are interested in the Laplacian flow, resp. coflow, we consider the 3-form Δ7ϕ, resp. 
the 4-form Δ7 ∗7 ϕ, when ϕ is closed, resp. coclosed. Let us start with the closed ones:



V. Manero et al. / Differential Geometry and its Applications 69 (2020) 101593 9
Proposition 3.1. Let ϕ be a warped closed G2-structure (5) on M6×f S
1 where (ω, ψ±) is an SU(3)-structure 

on M6. Then Δ7ϕ has the following expression:

Δ7ϕ = −d6(ασ2 + βπ2) + d6 ∗6
(
ν1 ∧ (αψ− + βψ+)

)
+ f

[
ν1 ∧ ∗6(ν1 ∧ ω2) − d6 ∗6 (ν1 ∧ ω2)

]
∧ ds,

where απ2 − βσ2 = 0.
In the particular case that the warping function f is constant (d6f = 0), then

Δ7ϕ = −d6(ασ2 + βπ2).

Proof. Since ϕ is closed, τ0 = τ1 = τ3 = 0 and by (10)

Δ7ϕ = d7τ2,

where in view of (7)

τ2 = −ασ2 − βπ2 + ∗6(ν1 ∧ (αψ− + βψ+)) − f ∗6 (ν1 ∧ ω2) ∧ ds.

For the case f constant, since 1
f d6f = −ν1 (see Table 3) then ν1 = 0 and the result holds. �

Consider now coclosed G2-structures:

Proposition 3.2. Let ϕ be a warped coclosed G2-structure (5) on M6×fS
1 where (ω, ψ±) is an SU(3)-structure 

on M6. Then Δ7 ∗7 ϕ has the following expression:

Δ7 ∗7 ϕ = 3
2 (απ0 − βσ0)

[
(απ0 − βσ0)ω2 + π1 ∧ (αψ+ − βψ−) − (απ2 − βσ2) ∧ ω

]
+ d6 ∗6 (π1 ∧ ω)

−d6(∗6ν3) + 3
2d6(απ0 − βσ0) ∧ (αψ+ − βψ−)

+f
[
2d6(απ0 − βσ0) ∧ ω + (απ0 − βσ0) (−2π1 ∧ ω − 3σ0ψ+ + 3π0ψ− + 2ν3) + d6(απ2 − βσ2)

−π1 ∧ ∗6
(
π1 ∧ (αψ+ − βψ−) + d6 ∗6

(
π1 ∧ (αψ+ − βψ−)

)
− π1 ∧ (απ2 − βσ2)

]
∧ ds,

where ασi + βπi = 0 for i = 0, 2.
Moreover, if f is constant, then

Δ7 ∗7 ϕ = 3
2 (απ0 − βσ0)

(
(απ0 − βσ0)ω2 − (απ2 − βσ2) ∧ ω

)
− d6(∗6ν3)

+3
2d6(απ0 − βσ0) ∧ (αψ+ − βψ−)

+f
[
2d6(απ0 − βσ0) ∧ ω + (απ0 − βσ0) (−3σ0ψ+ + 3π0ψ− + 2ν3) + d6(απ2 − βσ2)

]
∧ ds.

(11)

Proof. The condition ϕ being coclosed is equivalent to τ1 = τ2 = 0 and as a consequence of (10):

Δ7 ∗7 ϕ = ∗7Δ7ϕ = d7(τ0ϕ + τ3).

Now, using (7):

Δ7 ∗7 ϕ = d7

[
f
(
2(απ0 − βσ0)ω + ∗6

(
π1 ∧ (αψ+ − βψ−)

)
+ (απ2 − βσ2)

)
∧ ds

+3 (απ0 − βσ0)(αψ+ − βψ−) + ∗6(π1 ∧ ω) − ∗6ν3

]
,
2
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and the result follows. In order to prove (11), observe that π1 = 0 according to Table 3. �
Remark 3.3. In what follows, and similarly as in [11], we restrict our attention to the case of the warping 
function f is constant over the base manifold M6.

In order to obtain solutions of the Laplacian flow of a warped closed G2-structure, combining the expres-
sions (9) and Proposition 3.1, we can set the system of equations that must be satisfied:

Proposition 3.4. For a closed warped G2-structure (5), the equation of the Laplacian flow (LF) is equivalent 
to:

⎧⎪⎨
⎪⎩
f ′(t)ω(t) + f(t) ∂

∂t
ω(t) = 0,

α
∂

∂t
ψ+(t) − β

∂

∂t
ψ−(t) = −d6(ασ2(t) + βπ2(t)),

where απ2(t) − βσ2(t) = 0.

Remark 3.5. For the particular case of (α, β) = (1, 0), we recover the system already studied by Fino and 
Raffero in [11, Prop. 5.2].

Similarly, for the coflow, we get the following system of equations:

Proposition 3.6. For a coclosed warped G2-structure (5), the equation of the Laplacian coflow (LcF) is 
equivalent to:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ω2(t)
∂t

= −3(απ0(t) − βσ0(t))2ω2(t) + 3(απ0(t) − βσ0(t))(απ2(t) − βσ2(t)) ∧ ω(t)

+2d6(∗6ν3(t)) − 3d6(απ0(t) − βσ0(t)) ∧ (αψ+(t) − βψ−(t)),

f ′(t)
f(t) (βψ+(t) + αψ−(t)) +

(
β
∂ψ+(t)

∂t
+ α

∂ψ−(t)
∂t

)
=

−(απ0(t) − βσ0(t)) [−3σ0(t)ψ+(t) + 3π0(t)ψ−(t) + 2ν3(t)]

−d6(απ2(t) − βσ2(t)) − 2d6(απ0(t) − βσ0(t)) ∧ ω(t),

where ασi(t) + βπi(t) = 0 for i = 0, 2.

Corollary 3.7. For the particular case of (α, β) = (0, 1), the Laplacian coflow becomes:

⎧⎪⎪⎨
⎪⎪⎩

∂ω2(t)
∂t

= −3σ0(t)2ω2(t) + 3σ0(t)σ2(t) ∧ ω(t) + 2d6(∗6ν3(t)) − 3d6σ0(t) ∧ ψ−(t),

f ′(t)
f(t) ψ+(t) + ∂ψ+(t)

∂t
= −3σ0(t)2ψ+(t) + 2σ0(t)ν3(t) + d6σ2(t) + 2d6σ0(t) ∧ ω(t).

(12)

Remark 3.8. For the Laplacian coflow we chose the parameters (α, β) to be (0, 1) in order to obtain equa-
tions depending on the torsion forms σ0, σ2 and ν3 (see (2)) which are the ones that appear in the canonical 
definitions of the SU(3)-structures, nearly Kähler, symplectic half-flat and balanced, respectively (see equa-
tions (19), (22) and (28) in the next sections).
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4. New solutions to the Laplacian coflow

Our main objective is to provide new solutions ϕ(t) for the Laplacian coflow (12). In what follows we will 
consider one parameter families of warped G2-structures (8) on G ×S1, being G a Lie group. The underlying 
SU(3)-structures (ω(t), ψ+(t), ψ−(t)) are left-invariant and can be locally described as

ω(t) = x12 + x34 + x56,

ψ+(t) = x135 − x146 − x236 − x245, ψ−(t) = −x246 + x235 + x145 + x136,
(13)

where {xi(t)} denotes for every t a local adapted basis, xij stands for xi(t) ∧ xj(t) and xijk stands for 
xi(t) ∧ xj(t) ∧ xk(t). Our ansatz consists on stating that

xi(t) = fi(t)hi, (14)

where fi(t) are differentiable non-vanishing real functions satisfying fi(0) = 1 and {h1, . . . , h6} is an adapted 
basis for the SU(3)-structure for t = 0. Notice that (14) defines in fact a global basis since we are considering 
parallelizable manifolds.

Observe that the volume induced by ϕ(t) is given by vol7(t) = f(t)vol6(t) ∧ ds where

vol6(t) = x123456(t) =
6∏

i=1
fi(t)h123456 =

6∏
i=1

fi(t)vol6,

that is

vol7(t) =
( 6∏

i=1
fi(t)

)
f(t) vol6 ∧ ds. (15)

Direct computations show:

∂ω(t)
∂t

=
3∑

k=1

(
f ′
2k−1(t)
f2k−1(t)

+ f ′
2k(t)
f2k(t)

)
x2k−1(t) ∧ x2k(t). (16)

∂ω2(t)
∂t

= 2
∑

(i,j,k,l)∈J

(
f ′
i(t)
fi(t)

+
f ′
j(t)
fj(t)

+ f ′
k(t)
fk(t)

+ f ′
l (t)
fl(t)

)
xijkl, (17)

with J = {(1, 2, 3, 4), (1, 2, 5, 6), (3, 4, 5, 6)}.

f ′(t)
f(t) ψ+(t) + ∂ψ+(t)

∂t
=

(
f ′(t)
f(t) + f ′

1(t)
f1(t)

+ f ′
3(t)
f3(t)

+ f ′
5(t)
f5(t)

)
x135

−
∑

(i,j,k)∈I

(
f ′(t)
f(t) + f ′

i(t)
fi(t)

+
f ′
j(t)
fj(t)

+ f ′
k(t)
fk(t)

)
xijk,

(18)

with I = {(1, 4, 6), (2, 3, 6), (2, 4, 5)}.
As we mentioned before, the G2-geometry of the warped product imposes conditions on the SU(3)-

geometry of the base M6. Concretely, the G2-structure is coclosed if and only if the corresponding 
SU(3)-structure lies on the space W±

1 ⊕ W±
2 ⊕ W3 ⊕ W5 (see Table 3). Notice that if we consider a one-

parameter family of SU(3)-structures (ω(t), ψ±(t)) belonging to the previous space for any t, then the 
corresponding warped G2-structure will remain coclosed for any t. Moreover, in what follows we will impose 
that (ω(t), ψ±(t)) belongs to W−

1 , W−
2 or W3 for any t. Now we particularize (12) for some interesting cases 

of SU(3)-structures lying on these particular subspaces.
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4.1. The nearly Kähler case (W−
1 )

Recall that a nearly Kähler SU(3)-structure satisfies

dω = −3
2 σ0 ψ+, dψ+ = 0, dψ− = σ0ω

2. (19)

In particular, σ2 = ν3 = 0. Particularizing (12) for σ2(t) = ν3(t) = 0, we get

⎧⎪⎪⎨
⎪⎪⎩

∂ω2(t)
∂t

= −3σ0(t)2ω2(t) − 3d6σ0(t) ∧ ψ−(t),

f ′(t)
f(t) ψ+(t) + ∂ψ+(t)

∂t
= −3σ0(t)2ψ+(t) + 2d6σ0(t) ∧ ω(t).

Observe that with this particular ansatz, the left-hand side of the first equation above is a combination 
of the 4-forms x1234, x1256 and x3456 (see (17)); however, it can be easily proved that if η is a one-form, then 
η ∧ ψ−(t) never belongs to the space generated by x1234, x1256 and x3456, unless η = 0. Therefore, we need 
d6σ0(t) = 0, which means that σ0(t) is constant as a differentiable function on M6.

Now, the previous system simplifies as:

⎧⎪⎨
⎪⎩

∂ω2(t)
∂t

= −3σ0(t)2ω2(t),

f ′(t)
f(t) ψ+(t) + ∂ψ+(t)

∂t
= −3σ0(t)2ψ+(t).

(20)

Let us solve this system (as before, we denote fi(t)fj(t) simply as fij).

Lemma 4.1. If ∂ω
2(t)
∂t

= −3σ0(t)2 ω2(t), then, f12 = f34 = f56, where fi(t) are the functions in (14).

Proof. Using the symplectic operator L : Ωq(M) → Ωq+2(M) defined by L(η) = η∧ω, the previous equation 
can be expressed as:

∂ω2(t)
∂t

+ 3σ0(t)2 ω2(t) = 0 ⇐⇒ Lt

(
2 ∂ω(t)

∂t
+ 3σ0(t)2 ω(t)

)
= 0.

It happens that L is injective for q ≤ n − 1, being dimM = 2n [2]. Since in our case n = 3, we have that

Lt

(
2 ∂ω(t)

∂t
+ 3σ0(t)2 ω(t)

)
= 0 ⇐⇒ ∂ω(t)

∂t
= −3

2σ0(t)2 ω(t).

Using (16), ∂ω(t)
∂t

= −3
2σ0(t)2 ω(t) if and only if

(
f ′
1(t)
f1(t)

+ f ′
2(t)
f2(t)

)
=

(
f ′
3(t)
f3(t)

+ f ′
4(t)
f4(t)

)
=

(
f ′
5(t)
f5(t)

+ f ′
6(t)
f6(t)

)
= −3

2σ0(t)2,

which is equivalent to say

d

dt
(ln f12) = d

dt
(ln f34) = d

dt
(ln f56) = −3

2σ0(t)2.

In particular,
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f12

f34
= c1,

f12

f56
= c2,

f34

f56
= c3,

where ci are constants. Since fi(0) = 1, we obtain that f12 = f34 = f56. �
For the second equation we get:

Lemma 4.2. If f ′(t)
f(t) ψ+(t) + ∂ψ+(t)

∂t
= −3σ0(t)2 ψ+(t), then, f1(t) = f2(t), f3(t) = f4(t), f5(t) = f6(t), 

where fi(t) are the functions in (14).

Proof. Arguing as before, if f
′(t)
f(t) ψ+(t) + ∂ψ+(t)

∂t
= −3σ0(t)2 ψ+(t), then:

d

dt
(ln(f(t)f135)) = d

dt
(ln(f(t)f146)) = d

dt
(ln(f(t)f236)) = d

dt
(ln(f(t)f245)) = −3σ0(t)2.

In particular, observe that:

d

dt
(ln(f(t)fijk)) = d

dt
(ln(f(t)fipq)) ⇐⇒ d

dt

(
ln f(t)fijk

f(t)fipq

)
= 0 ⇐⇒ ln fjk

fpq
= c ⇐⇒ fjk

fpq
= 1,

where c is a constant and we have used the fact that fi(0) = 1. So:

d

dt
(ln(f(t)f135)) = d

dt
(ln(f(t)f146)) = d

dt
(ln(f(t)f236)) = d

dt
(ln(f(t)f245)) ⇐⇒{

f13 = f24, f14 = f23, f15 = f26,

f16 = f25, f35 = f46, f36 = f45,

⇐⇒ f1(t)2 = f2(t)2, f3(t)2 = f4(t)2, f5(t)2 = f6(t)2 ⇐⇒ f1(t) = f2(t), f3(t) = f4(t), f5(t) = f6(t),

where for the last equivalence we have used that fi(t) are continuous functions satisfying fi(0) = 1. �
We can combine the two previous results to conclude that fi(t) = fj(t) for i, j = 1, . . . , 6. If we denote 

fi(t) = F (t) for all i = 1, . . . , 6, then (ω(t), ψ±(t)) has the particular form:

ω(t) = F 2(t)ω, ψ+(t) = F 3(t)ψ+, ψ−(t) = F 3(t)ψ−. (21)

Lemma 4.3. Let (ω(t), ψ±(t)) be the one-parameter family of SU(3)-structures given in (21) where (ω, ψ±)
is a nearly Kähler structure. Then (ω(t), ψ±(t)) is nearly Kähler for all t if and only if σ0(t) = σ0

F (t) .

Proof. Equation (21) implies that dω(t) = F 2(t)dω, and dψ−(t) = F 3(t)dψ−. Since (ω, ψ±) is nearly Kähler, 
one has

dω(t) = −3
2σ0F

2(t)ψ+, dψ−(t) = σ0F
3(t)ω2,

or equivalently

dω(t) = −3
2

σ0

F (t)ψ+(t) and dψ−(t) = σ0

F (t)ω
2(t).

Therefore, 
(
ω(t), ψ±(t)

)
is nearly Kähler for all t if and only if σ0(t) = σ0

F (t) , and the result follows. �
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In the next result we show how to solve the Laplacian coflow in this particular case.

Proposition 4.4. Let M6 be a manifold endowed with a nearly Kähler structure (ω, ψ±). Then the one-
parameter family of warped G2-structures on M6 ×f S1 given by

ϕ(t) =
(

1 − 3σ2
0

2 t

)3/2

(c ω ∧ ds− ψ−) and ∗t ϕ(t) =
(

1 − 3σ2
0

2 t

)2 (1
2ω

2 + cψ+ ∧ ds

)

is a solution of the Laplacian coflow for t ∈
(
−∞, 2

3σ2
0

)
, being f(t) = c

(
1 − 3σ2

0
2 t

)1/2
, c ∈ R∗.

Proof. From Lemmas 4.1, 4.2 and 4.3, the system (20) with (ω(t), ψ±(t)) nearly Kähler for all t is equivalent 
to ⎧⎨

⎩
4F ′(t)F (t) = −3σ2

0 ,

f ′(t)
f(t) F

2(t) + 3F ′(t)F (t) = −3σ2
0 ,

whose solution is

F (t) =
(
1 − 3σ2

0
2 t

)1/2
, f(t) = c

(
1 − 3σ2

0
2 t

)1/2

and the result follows. �
Corollary 4.5. In the conditions above, the volume form induced by the one-parameter family of warped 
G2-structures on M6 ×f S1 is such that

lim
t→T−

vol7(t) = 0,

where T = 2
3σ2

0
is the maximal existence time of the solution.

Proof. Just observe that, using (15), vol7(t) = c
(
1 − 3σ2

0
2 t

)7/2
vol6 ∧ ds. �

Remark 4.6. Not many examples of nearly Kähler manifolds are known. Recently, new complete examples 
on S6 and S3×S3 have been described in [12] and [21]. Next we solve the Laplacian coflow using an explicit 
example of nearly Kähler structure appeared in [21].

Example 4.7. Consider the sphere S3, viewed as the Lie group SU(2) with the basis of left-invariant one-forms 
{λ1, λ2, λ3} satisfying

dλ1 = λ23, dλ2 = −λ13, dλ3 = λ12.

Thus, su(2) ⊕ su(2) is the Lie algebra of S3 × S3 and its structure equations are:

su(2) ⊕ su(2) = (λ23,−λ13, λ12, ν23,−ν13, ν12)

with {νi} the basis of left-invariant 1-forms on the second sphere. The pair (ω, ψ+) with

ω =
√

3(λ1 ∧ ν1 + λ2 ∧ ν2 + λ3 ∧ ν3),
18
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ψ+ =
√

3
54 (λ23 ∧ ν1 − λ1 ∧ ν23 − λ13 ∧ ν2 + λ2 ∧ ν13 + λ12 ∧ ν3 − λ3 ∧ ν12),

where ω is the Kähler form and ψ+ is the real part of the complex (3,0)-form, defines a nearly Kähler 
SU(3)-structure on S3 × S3. Observe that the basis {λi, νi} is not adapted to the SU(3)-structure.

Consider {h1, . . . , h6} the basis of left-invariant 1-forms on S3 × S3 given by

h1 = 1
3λ

1 − 1
6ν

1, h2 =
√

3
6 ν1, h3 = 1

3λ
2 − 1

6ν
2, h4 =

√
3

6 ν2, h5 =
√

3
6 ν3, h6 = −1

3λ
3 + 1

6ν
3.

This basis is adapted to the SU(3)-structure and (ω, ψ+) turns out to be nearly Kähler with σ0 = −2. 
Therefore, in view of Proposition 4.4, the one-parameter family of warped G2-structures on (S3×S3) ×f S

1

given by

ϕ(t) =
(
1 − 6 t

)3/2[
c(h12 + h34 + h56) ∧ ds + h246 − h235 − h136 − h145

]

and

∗tϕ(t) =
(
1 − 6 t

)2[
h1234 + h1256 + h3456 + c(h135 − h146 − h236 − h245) ∧ ds

]
,

where f(t) = c (1 − 6t)
1
2 , is a solution of the Laplacian coflow for all t ∈

(
−∞, 16

)
.

4.2. The symplectic half-flat case (W−
2 )

Recall that a symplectic half-flat SU(3)-structure satisfies

dω = 0, dψ+ = 0, dψ− = −σ2 ∧ ω. (22)

In particular, σ0 = ν3 = 0. Particularizing (12) for σ0(t) = ν3(t) = 0, we get

⎧⎪⎪⎨
⎪⎪⎩

∂ω2(t)
∂t

= 0,

f ′(t)
f(t) ψ+(t) + ∂ψ+(t)

∂t
= d6σ2(t).

(23)

Now, we get necessary conditions in order to solve the Laplacian coflow. Arguing similarly as Lemma 4.1
and providing that σ0(t) = 0, it is straightforward to see that the first equation of (23) holds if and only if

f2(t) = 1
f1(t)

, f4(t) = 1
f3(t)

, f6(t) = 1
f5(t)

. (24)

In this setting, the behaviour of the induced volumen is vol7(t) = f(t)vol6 ∧ ds (see (15)).
The following technical result, that makes use of equation (18), states how to solve the coflow in the 

symplectic half-flat case:

Lemma 4.8. Consider a warped coclosed G2-structure ϕ on M6 ×f S
1 where (ω, ψ±) is a symplectic half-flat 

SU(3)-structure. Then ϕ(t), given by (8), is a solution of the coflow (23) using the ansatz (14) if and only 
if f(t), f1(t), f3(t) and f5(t) satisfy:
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⎧⎪⎪⎨
⎪⎪⎩

A135(t) = f ′(t)
f(t)

+ f ′
1(t)
f1(t)

+ f ′
3(t)
f3(t)

+ f ′
5(t)
f5(t)

, A146(t) = f ′(t)
f(t)

+ f ′
1(t)
f1(t)

− f ′
3(t)
f3(t)

− f ′
5(t)
f5(t)

,

A236(t) = f ′(t)
f(t) − f ′

1(t)
f1(t)

+ f ′
3(t)
f3(t)

− f ′
5(t)
f5(t)

, A245(t) = f ′(t)
f(t) − f ′

1(t)
f1(t)

− f ′
3(t)
f3(t)

+ f ′
5(t)
f5(t)

,

(25)

where functions A135(t), A146(t), A236(t), A245(t) are such that

d6σ2(t) = A135(t)x135 −A146(t)x146 −A236(t)x236 −A245(t)x245,

and (ω(t), ψ±(t)) is symplectic half-flat for all t.

In order to obtain examples and inspired in the solutions given in Proposition 4.4, we will consider the 
functions fi(t) of potential type, i.e.

fi(t) = (1 + kt)αi (26)

with αi and k real numbers. Thus the solutions of the coflow are of the form:

ϕ(t) = f(t)
[
(1 + kt)α1+α2h12 + (1 + kt)α3+α4h34 + (1 + kt)α5+α6h56] ∧ ds

− (1 + kt)α2+α4+α6h246 + (1 + kt)α2+α3+α5h235 + (1 + kt)α1+α4+α5h145

+ (1 + kt)α1+α3+α6h136,

(27)

where the basis {h1, . . . , h6} is defined in (14).
Next we solve the Laplacian coflow on unimodular solvable Lie algebras.

Example 4.9. Consider the Lie algebra e(1, 1) ⊕ e(1, 1) whose structure equations are

e(1, 1) ⊕ e(1, 1) := (0, 0,−h14,−h13, h25,−h26).

The corresponding connected and simply connected Lie group G admits a left-invariant symplectic half-
flat structure which is given canonically by (1) in basis {hi}. Let us consider a one-parameter family of 
SU(3)-structures given by (13) with xi(t) = fi(t)hi being fi(t) of potential type as in (26). The structure 
equations of e(1, 1) ⊕ e(1, 1) with respect to the time-dependent basis {xi(t)} are

(0, 0,−(1 + kt)α3−α1−α4x14,−(1 + kt)α4−α1−α3x13, (1 + kt)−α2x25,−(1 + kt)−α2x26).

In order to obtain solutions for the Laplacian coflow, and in view of (24), we can set

α2 = −α1, α4 = −α3, and α6 = −α5.

With these values, we impose the preservation of the symplectic half-flat condition. It is easy to verify 
that dω(t) = 0 for all t; ψ+(t) remains closed if and only if α1 = α3 = 0, since

dψ+(t) =
(
− (1 + kt)α1 + (1 + kt)−α1−2α3

)
x1235 +

(
− (1 + kt)α1 + (1 + kt)−α1+2α3

)
x1246.

So, (ω(t), ψ±(t)) is symplectic half-flat for all t if and only if α1 = α2 = α3 = α4 = 0. Observe that the 
structure equations are simply:

e(1, 1) ⊕ e(1, 1) := (0, 0,−x14,−x13, x25,−x26).
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Finally, to solve the second equation of (23) we make use of (25). Since (ω(t), ψ±(t)) is symplectic half-flat 
for all t, σ2(t) = − ∗t dψ−(t), see (2), and therefore

dσ2(t) = −2x135 + 2x146 + 2x236 + 2x245,

which means that Aijk(t) = −2. We obtain the system
⎧⎨
⎩

f ′(t)
f(t) + kα5(1 + kt)−1 = −2,
f ′(t)
f(t) − kα5(1 + kt)−1 = −2,

which can be solved taking

α5 = 0 and f(t) = c e−2t, c ∈ R∗.

Therefore, the one-parameter family of G2-structures on G ×f S1 given by (27)

ϕ(t) = c e−2t(h12 + h34 + h56) ∧ ds− h246 + h235 + h145 + h136

is a solution of the Laplacian coflow for all t ∈ R. Since limt→T f(t) = 0, where T = +∞ is the maximal 
existence time of the solution, we obtain that limt→T vol7(t) = 0.

In [10], the authors classify the 6-dimensional unimodular solvable Lie algebras admitting symplectic 
half-flat SU(3)-structure and show that all the corresponding solvable Lie groups admit a co-compact discrete 
subgroup. In addition to the Lie algebra e(1, 1) ⊕ e(1, 1), in terms of an adapted basis {hi}6

i=1 to the 
SU(3)-structure, the structure equations of these algebras are the following:

g5,1 ⊕R = (0, 0, 0, h15, 0, h13),

A−1,−1,1
5,7 ⊕R = (h16,−h26,−h36, h46, 0, 0),

A−a,−a,1
5,17 ⊕R = (ah15 + h35,−ah25 + h45,−h15 + ah35,−h25 − ah45, 0, 0),

g6,N3 = (0,−2h35, 0,−h15, 0, h13),

g0
6,38 = (2h36, 0,−h26, h25 − h26,−h23 − h24, h23),

g
0,−1
6,54 =

(
h16
√

2
+ h45,−h26

√
2
, h25 − h36

√
2
,
h46
√

2
, 0, 0

)
,

g
0,−1,−1
6,118 = (−h15 + h36, h25 + h46,−h16 − h35,−h26 + h45, 0, 0).

In Table 4 we present long time solutions to the Laplacian coflow for G2-structures obtained as warped 
products of solvmanifolds endowed with symplectic half-flat SU(3)-structures. These solutions can be ob-
tained as follows: consider Lemma 4.8 with the potential functions given in (26) and a warping function 
also of potential type

f(t) = c (1 + kt)β , c ∈ R∗.

Thus, using (25), we obtain a linear system of equations in αi, β and k that can be easily solved. Known 
the values of αi, β and k and considering (27) we can give an explicit description of the solutions of the 
Laplacian coflow for each example. We also include the value of dσ2(t) in each case, necessary to compute 
the parameters of the solutions.

In particular, in any case limt→T− f(t) = 0, where T = −1
k is the maximal existence time of the solution, 

and therefore, limt→T− vol7(t) = 0.
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Table 4
Solutions of the Laplacian coflow in the SHF-case.
Lie algebra dσ2(t) (α1, . . . , α6) β k

g5,1 ⊕ R A135 = −2(1 + kt)−2α1−2α3−2α5 ( 1
6 ,− 1

6 ,
1
6 ,− 1

6 ,
1
6 ,− 1

6 ) 1
6 −3

A−1,−1,1
5,7 ⊕ R A146 = A236 = −4(1 + kt)2α5 (0, 0, 0, 0,− 1

2 ,
1
2 ) 1

2 −4
A−a,−a,1

5,17 ⊕ R A135 = A245 = −4a2(1 + kt)−2α5 (0, 0, 0, 0, 1
2 ,− 1

2 ) 1
2 −4a2

g6,N3 A135 = −6(1 + kt)−2α1−2α3−2α5 ( 1
6 ,− 1

6 ,
1
6 ,− 1

6 ,
1
6 ,− 1

6 ) 1
6 −9

g
0
6,38 A236 = −6(1 + kt)2α1−4α3 (− 1

6 ,
1
6 ,

1
6 ,− 1

6 ,− 1
6 ,

1
6 ) 1

6 −9

g
0,−1
6,54

A146 = A236 = −2(1 + kt)2α5

(− 1
2 ,

1
2 ,− 1

2 ,
1
2 ,− 1

2 ,
1
2 ) 3

2 −1
A245 = −2(1 + kt)2α1+2α3−2α5

g
0,−1,−1
6,118

A135 = A245 = −4(1 + kt)−2α5

(0, 0, 0, 0, 1
2 ,− 1

2 ) 1
2 −4

A146 = A236 =
−2(1 + kt)2α5(−1 + (1 + kt)2α1−2α3 )

4.3. The balanced case (W3)

Recall that a balanced SU(3)-structure satisfies

dω = ν3, dψ+ = 0, dψ− = 0. (28)

In particular, σ0 = σ2 = 0. Particularizing (12) for σ0(t) = σ2(t) = 0, we get

⎧⎪⎪⎨
⎪⎪⎩

∂ω2(t)
∂t

= 2d6(∗6ν3(t)),

f ′(t)
f(t) ψ+(t) + ∂ψ+(t)

∂t
= 0.

(29)

In this case, we can apply Lemma 4.2 with σ0(t) = 0 (compare the second equations in (20) and (29)) 
obtaining the same conclusion, i.e., f2k(t) = f2k−1(t) for k = 1, 2, 3. Now, the behaviour of the induced 
volumen is vol7(t) = f1(t)2f3(t)2f5(t)2f(t)vol6 ∧ ds.

Similarly to Lemma 4.8, we can set:

Lemma 4.10. Consider a warped coclosed G2-structure ϕ on M6 ×f S1 where (ω, ψ±) is a balanced 
SU(3)-structure. Then ϕ(t), given by (8), is a solution of the coflow (29) using the ansatz (14) if and 
only if f(t), f1(t), f3(t) and f5(t) satisfy:

B1234(t) = 2
(
f ′
1(t)
f1(t)

+ f ′
3(t)
f3(t)

)
, B1256(t) = 2

(
f ′
1(t)
f1(t)

+ f ′
5(t)
f5(t)

)
, B3456(t) = 2

(
f ′
3(t)
f3(t)

+ f ′
5(t)
f5(t)

)
,

where functions B1234(t), B1256(t), B3456(t) are such that

d6(∗ν3(t)) = B1234(t)x1234 + B1256(t)x1256 + B3456(t)x3456,

and (ω(t), ψ±(t)) is balanced for all t.

The examples that we present in this case are the 6-dimensional nilpotent Lie algebras admitting balanced 
SU(3)-structures, that are classified in [22]. In terms of an adapted basis to the balanced SU(3)-structure, 
the structure equations are:

h2 = (0, 0, 0, 0, 2h12 +
(
2
√

2 − 2
)
h13 +

(
−2 − 2

√
2
)
h24 − 2h34, 4

√
2h12 + 4

√
2h23 − 4

√
2h34),

h3 = (0, 0, 0, 0, 0,−2h12 + 2h34),

h4 = (0, 0, 0, 0, 2h13, h14 + h23),
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h5 = (0, 0, 0, 0, h13 − h24, h14 + h23),

h6 = (0, 0, 0, 0, h13, h14),

h
−
19 = (0, 0,−h15,−h25, 0,−h13 − h24).

We present long time solutions for the Laplacian coflow of G2-structures obtained as warped products of 
balanced nilmanifolds endowed with SU(3)-structures. These solutions remain balanced for any t. As before, 
with the notation in Lemma 4.10 and functions of potential type (26) giving an explicit description of these 
solutions is equivalent to obtain the values of the parameters αi, β and k. Solving the corresponding linear 
equations these values are given in Table 5. The solutions ϕ(t) of the coflow are of the form (27). We also 
include the value of d ∗ ν3(t) in each case, necessary to compute the parameters of the solutions.

Table 5
Solutions of the Laplacian coflow in the balanced case.

Lie algebra d ∗ ν3(t) (α1, . . . , α6) β k

h2 B1234 = −128(1 + kt)−4α1+2α5 ( 1
6 ,

1
6 ,

1
6 ,

1
6 ,− 1

6 ,− 1
6 ) − 1

6 −192
h3 B1234 = −8(1 + kt)−4α1+2α5 ( 1

6 ,
1
6 ,

1
6 ,

1
6 ,− 1

6 ,− 1
6 ) − 1

6 −12
h4 B1234 = −6(1 + kt)−2α1−2α3+2α5 ( 1

6 ,
1
6 ,

1
6 ,

1
6 ,− 1

6 ,− 1
6 ) − 1

6 −9
h5 B1234 = −4(1 + kt)−2α1−2α3+2α5 ( 1

6 ,
1
6 ,

1
6 ,

1
6 ,− 1

6 ,− 1
6 ) − 1

6 −6
h6 B1234 = −2(1 + kt)−2α1−2α3+2α5 ( 1

6 ,
1
6 ,

1
6 ,

1
6 ,− 1

6 ,− 1
6 ) − 1

6 −3

h
−
19

B1234 = −2(1 + kt)−2α1−2α3+2α5

( 1
2 ,

1
2 , 0, 0, 0, 0) − 1

2 −2
B1256 = −2(1 + kt)−2α1+2α3−2α5

Observe that in these cases, limt→T− vol7(t) = limt→T−(1 + kt)2α1+2α3+2α5+β = limt→T−(1 + kt)−β = 0, 
where T = −1

k is the maximal existence time of the solution.
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